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ABSTRACT

An ensemble of the three-dimensional variational data assimilation (En3DA) method for convective-scale

weather has been developed. It consists of an ensemble of three-dimensional variational data assimilations

and forecasts in which member differences are introduced by perturbing initial conditions and/or observa-

tions, and it uses flow-dependent error covariances generated by the ensemble forecasts. The method is

applied to the assimilation of simulated radar data for a supercell storm. Results indicate that the flow-

dependent ensemble covariances are effective in enabling convective-scale analyses, as the most important

features of the simulated storm, including the low-level cold pool and midlevel mesocyclone, are well ana-

lyzed. Several groups of sensitivity experiments are conducted to test the robustness of the method. The first

group demonstrates that incorporating a mass continuity equation as a weak constraint into the En3DA

algorithm can improve the quality of the analyses when radial velocity observations contain large errors. In

the second group of experiments, the sensitivity of analyses to the microphysical parameterization scheme is

explored. Results indicate that the En3DA analyses are quite sensitive to differences in the microphysics

scheme, suggesting that ensemble forecasts with multiple microphysics schemes could reduce uncertainty

related to model physics errors. Experiments also show that assimilating reflectivity observations can reduce

spinup time and that it has a small positive impact on the quality of the wind field analysis. Of the threshold

values tested for assimilating reflectivity observations, 15 dBZ provides the best analysis. The final group of

experiments demonstrates that it is not necessary to perturb radial velocity observations for every ensemble

number in order to improve the quality of the analysis.

1. Introduction

Many studies have been performed using Doppler ra-

dar observations to initialize convection-allowing nu-

merical models (CAMs) with advanced data assimilation

(DA) methods, such as three- or four-dimensional vari-

ational techniques (3DVAR or 4DVAR, respectively)

and the ensemble Kalman filter (EnKF; Stensrud et al.

2013; Sun et al. 2014). Among these methods, 3DVAR is

the least complex approach. It can be modified easily to

use mass continuity and other appropriate model equa-

tions as weak constraints, and it is so computationally

efficient that it has been implemented in real-time ap-

plications (Gao et al. 1999, 2004; Barker et al. 2004; Xiao

et al. 2005; Hu et al. 2006; Hu and Xue 2007; Ge and Gao
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2007; Ge et al. 2010; Stensrud and Gao 2010; Xie et al.

2011; Gao et al. 2013a). For example, the Advanced

Regional Prediction System (ARPS) 3DVAR system

with incremental analysis updating was developed at the

Center for Analysis and Prediction of Storms (CAPS)

specifically to assimilate radar data and other conven-

tional and remotely sensed data into CAMs (Gao et al.

1999, 2004). The system has used WSR-88D data to

provide initial conditions for CAM ensemble forecasts

during the Hazardous Weather Testbed (HWT) Spring

Forecasting Experiments since 2008 (Clark et al. 2012).

The ARPS 3DVAR has been also used in the HWT

Experimental Warning Program to provide a real-time

convective-scale three-dimensional storm analysis (Gao

et al. 2013a). Forecasters using these analyses in warning-

decision processes found the products had high potential

for positive impact on warning operations (Smith et al.

2014; Calhoun et al. 2014).

The more advanced 4DVAR incorporates the full

prediction model into the assimilation system and im-

plicitly includes the effects of flow-dependent error co-

variances through the forward and backward models.

Convective-scale radar DA using 4DVAR has been

applied successfully to many storm events (Sun and

Crook 1997, 1998, 2001; Sun 2005; H. Wang et al. 2013;

Sun and Wang 2013). In a recent study, a 4DVAR with

radar DA capability was developed for CAMs (H.Wang

et al. 2013), and testing indicated that the 4DVAR can

lead to significantly improved quantitative precipitation

forecasts (QPFs) compared to the 3DVAR system.

Chang et al. (2015) reported on the implementation of

an ice-phase microphysical process in a convective-scale

4DVAR and found that using this scheme had positive

impacts on the short-term forecasts. However, despite

these encouraging results, more work is needed for

convective-scale 4DVARwhen usedwithmore complex

microphysics schemes.

Encouraging results also have been obtained using the

EnKF method to assimilate radar observations of con-

vective storms. Typically, one of two general types of

EnKF systems is used in convective-scale applications.

One is the ensemble square root filter (EnSRF;

Whitaker and Hamill 2002; Snyder and Zhang 2003;

Zhang et al. 2004; Tong and Xue 2005; Dowell et al.

2004, 2011; Yussouf and Stensrud 2010; Marquis et al.

2014), while the other is the local ensemble transform

Kalman filter (Hunt et al. 2007; Thompson et al. 2014).

Recent radar DA experiments by Thompson et al.

(2014) suggested that there was no significant difference

between the two EnKF schemes and both were equally

capable for radar DA.

The relative advantages and disadvantages of varia-

tional and EnKF approaches to DA were extensively

discussed by Lorenc (2003) and Kalnay et al. (2007).

While the 3DVAR is easy to implement and computa-

tionally efficient, its major shortcoming is having sta-

tionary and isotropic background error covariances,

which is not optimal for the high spatial and temporal

intermittency of convective-scale flows. In 4DVAR, the

background error covariance is propagated implicitly

in a dynamically consistent manner by the interactions

with the numerical weather prediction (NWP)model, its

adjoint model, and observation operators, but the de-

velopment of the adjoint model is time consuming, and

any updates to the numerical model require an update to

the adjoint model. One of the advantages of the EnKF

over variational methods is that the former can explicitly

provide the flow-dependent background error covari-

ances. However, a major shortcoming with ensemble-

basedDA is rank deficiency or sampling error as a result

of relatively small ensemble sizes. This problem may be

even more severe with convective-scale DA because

large model biases may exist and the total number of

degrees of freedom of the system is much larger than

that for synoptic scale. Caya et al. (2005) found that

EnKF typically produces better analyses than 4DVAR

in later assimilation cycles, but EnKF has a spinup

problem during early assimilation cycles.

In addition, the model states resulting from applying

the EnKF method usually are not balanced, and this lack

of balance sometimes leads to the model forecasts mov-

ing quickly away from the analyses, whereas balance

constraints can be imposed with 3DVAR and 4DVAR.

To blend the advanced features of both variational

and EnKF methods and to overcome their respective

shortcomings, hybrid ensemble and variational DA

methods were proposed by Barker (1999), Hamill and

Snyder (2000), and Lorenc (2003). In these hybrid

methods, the flow-dependent background error co-

variance estimated from the ensemble members and the

static background error covariance that is commonly

used in a variational framework are combined to form a

hybrid covariance, which is built into the cost function.

For large-scale DA, hybrid methods have been suc-

cessfully demonstrated by Hamill and Snyder (2000),

Buehner (2005), Zupanski (2005), and X. Wang et al.

(2008a,b, 2013). Furthermore, Barker et al. (2012), Li

et al. (2012), and Zhang et al. (2013) recently reported

on the capability of a hybrid system for mesoscale

weather events. Several global operational NWP centers

have also adopted this method, as reported in Buehner

et al. (2010a,b), wherein forecast improvements were

found where observations are sparse, whereas a hybrid

method within the Met Office unified global NWP sys-

tem led to only very modest forecast improvements

(Clayton et al. 2013). Liu et al. (2008, 2009) proposed a
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different hybrid ensemble and variational formulation

in which the four-dimensional background error co-

variances were estimated from an ensemble of fore-

casts and used in a variational framework without using

the tangent-linear or adjoint versions of the forecast

model. This method is attractive because of its easy

implementation in operational environments (Clayton

et al. 2013).

Another type of hybrid method for calculating back-

ground error covariance statistics that holds good

promise is an ensemble of DAs (Kucukkaraca and

Fisher 2006; Berre et al. 2007; Bonavita et al. 2012). In

this method, an ensemble of variational analyses is ex-

ecuted, with each analysis created from a perturbed

initial condition with perturbed observations. This ap-

proach unifies the ensemble forecast and DA systems,

while allowing existing variational approaches to be

usedwith littlemodification. It has been applied using an

ensemble of 4DVAR by Meteo France (Kucukkaraca

and Fisher 2006; Berre et al. 2007) and ECMWF

(Bonavita et al. 2012). In both centers, a 4DVAR system

is being used, with tangent-linear and adjoint models

such that the observational information is propagated

throughout the data-assimilation window in a dynami-

cally consistent manner. One key drawback of using an

ensemble of 4DVAR is the computational cost in-

volved, which limits the attainable ensemble size and

therefore requires special filter techniques to smooth

the noisy ensemble variance (Berre et al. 2007; Bonavita

et al. 2012).

Inspired by the success of hybrid strategies using

flow-dependent ensemble information in variational

methods, Gao et al. (2013b) and Gao and Stensrud

(2014) demonstrated the potential of a hybrid 3DVAR

and EnKF method for convective-scale DA. Following

Bowler et al. (2013), this approachwas called 3DEnVAR.

The algorithm uses the extended control variable ap-

proach to combine the static and ensemble-derived

flow-dependent background error covariance to form a

hybrid covariance. Results with simulated radar obser-

vations of a supercell storm indicated the hybrid method

provides better analyses for small ensembles than the

3DVAR, EnKF, and 3DEnVAR with pure ensemble

covariance. For relatively large ensemble sizes (50–100),

the performance of the hybrid method is close to that of

EnKF, and both are significantly better than that of the

3DVAR. Sensitivity experiments indicate that the best

results occur when the number of the augmented control

variables is a function of three spatial dimensions and

ensemble members and is the same for all analysis var-

iables (Gao and Stensrud 2014). In the above study, the

EnKF method was involved. Because radar data are

usually in high density, the use of EnKF method in the

hybrid approach is also very computationally expensive,

especially for convective-scale NWP.

In this study, we adopt the ensemble of DAs (EDA)

concept discussed above and used by Meteo France and

ECMWF (Berre et al. 2007; Bonavita et al. 2012) for

convective-scale data DA but use the extended control

variable method to introduce ensemble covariance into

the variational system. This EDA approach would be

very expensive if the inner core DA scheme was 4DVAR.

Here we use 3DVAR, which is computationally much

more efficient. The approach is labeled En3DA, as it

consists of an ensemble of 3DVAR analyses. The ad-

vantage of this method is that it can producemultivariant

flow-dependent background error covariances, which are

particularly needed in convective-scale radar DA be-

cause of the limited number of observation types (i.e.,

radar only provides radial velocity, reflectivity, and vari-

ous quantities derived from dual polarization of the ra-

dar signal, none of which are prognostic variable in most

NWP models).

In section 2, we briefly introduce the En3DAmethods,

while section 3 describes the DA experiment design.

In section 4, sensitivity experiments and quantitative

performance are assessed in section 5. We conclude

in section 6 with a summary and outlook for future

work.

2. Description of DA method

In the following, we briefly describe the En3DA

method used in this study. Suppose we have ensemble

forecasts from K ensemble members, which can be de-

noted as xb1 , x
b
2 , . . . , x

b
k; it is convenient to denote a

matrix E, the columns of which are defined by normal-

ized differences between the ensemble-member fore-

casts and the ensemble mean:

E5 (xb1 2 xb, xb2 2 xb, . . . xbk 2 xb)/
ffiffiffiffiffiffiffiffiffiffiffiffi
K2 1

p
. (1)

Then the ensemble covariance Pe is given by

P
e
5EET . (2)

The rank of the above constructed ensemble covariance

is ensemble size K. Because of the limitation of com-

puter resources, K is usually much smaller than the

number of degrees of freedom in the NWP model, and

this causes a low-rank problem and associated sampling

error. To solve the above problem, Houtekamer and

Mitchell (2001) proposed using the Schur product de-

fined in Gaspari and Cohn (1999) by

B
e
5C+PT

e . (3)
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Here, C is a localization covariance, or correlation ma-

trix, and + stands for the element-by-element product of

two matrices with the same dimension. The purpose of

using matrix C is to filter out the small ensemble cor-

relations that may be dominated by sampling noise as-

sociated with remote observations while keeping the

robust correlations closer to observations relatively

unaffected. By doing this, the conditioning of original

ensemble covariance matrix Pe is greatly improved. The

procedure of localization is fully discussed in Lorenc

(2003), Buehner (2005), and Wang et al. (2007) and is

not repeated here. There are several ways to conduct

covariance localization (Bishop et al. 2011), with the

most often used being matrix C as a compactly sup-

ported fifth-order piecewise rational function given by

Gaspari and Cohn (1999). The effect of this localization

function is modeled by a recursive filter (Purser et al.

2003a,b) for simplicity, which is suggested by Wang

et al. (2008a).

The cost function, Jk, where k5 1, 2, . . . ,K used in the

En3DA is defined as the sum of the background and

observational terms plus a penalty or equation con-

straint term:

J
k
5

1

2
(x

k
2 xbk)

TB21(x
k
2 xbk)

1
1

2
[H(x

k
)2 yok]

TR21[H(x
k
)2 yok]1 J

c
(x

k
) . (4)

Here, xk are the analysis vectors and xbk are the back-

ground state vectors from the ensemble forecasts de-

fined in (1), H(x) is the observation operator, and yok is

the observation vector for ensemble member k.Here, yok
can be the same vector for every ensemble member or

can be different for each ensemble member by applying

random perturbations to the original observations. The

term Jc in (4) includes any penalty or dynamic equation

constraint terms that may be added to serve the im-

portant role of correlating the desired analysis variables.

The mass continuity equation is imposed as a weak

constraint in (4) and many previous applications (Gao

et al. 1999, 2004), and details regarding this constraint

are discussed in the experiment design and results

sections. Matrix R is the observation error covariance

matrix. To effectively precondition the minimization

problem, we follow Derber and Rosati (1989) and

Courtier (1997) and define an alternative control

variable v such that analysis increment Dxk 5
B1/2

e vk 5 (xk 2 xbk), which allows the cost function to

be changed into a preconditioned incremental form

such that

J
k
5

1

2
vTkvk 1

1

2
[H(xbk 1B1/2

e v
k
)2 yok]

TR21[H(xbk 1B1/2
e v

k
)2 yok]1 J

c
(v

k
) . (5)

In the standard 3DVAR scheme, the square root of

matrix background error covariance B is static and

usually significantly simplified as, for example, a re-

cursive filter to model the covariance structure (Purser

et al. 2003a,b). In this study, the matrix Be [defined in

(3)] is derived from an ensemble of forecasts so each

analysis with (5) can also be called a 3DEnVAR scheme.

For computational efficiency, we also use the recursive

filter to localize the ensemble covariance in model space

(Wang et al. 2008a). By using new control variables

v, the minimization procedure is preconditioned by

square root of the flow-dependent background error

covariance, denoted by B1/2
e . The forecast ensemble–

derived flow-dependent Be, in particular the cross

covariances between different model variables, are

nonzero and thus should be more useful than the simple

static covariance (wherein the cross covariances are

zero) implemented in Gao and Stensrud (2012).

In addition, an extra model integration for the length

of the analysis cycle is needed to produce a control

forecast and analysis cycle.Anensemble of the 3DEnVAR

analyses is performed by minimizing the cost function

(5) K separate times to update the analysis increment

for each ensemble member (which starts from a dif-

ferent initial condition; see Fig. 1). Each 3DEnVAR

FIG. 1. Illustration of cycle used in an ensemble of 3DEnVAR

analysis scheme.
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analysis uses the ensemble covariance derived from

other ensemble forecasts except for the forecast used as

background field for itself, thereby avoiding the poten-

tial underestimation of the variance of the background

errors (Houtekamer and Mitchell 1998; Hamill and

Snyder 2000). For example, the member-1 3DEnVAR

analysis uses ensemble covariance derived from ensem-

ble members 2–K; member-2 3DEnVAR uses ensemble

covariance derived from members 1 and 3–K, and finally

the control member 3DEnVAR analysis uses covariance

derived from ensemble members 1–K. In this way, the

ensemble information is used in every 3DEnVAR anal-

ysis. Each 3DEnVAR analysis in the En3DA scheme is

then recentered using the control analysis. The idea of

the dual-resolution concept [Gao and Xue (2008); not

used in this study] can be easily implemented as well.

After the initial conditions for the ensemble and one

control forecast are obtained, the ensemble forecasts

are launched. The above steps are repeated for each

DA cycle. However, early testing suggests that the

ensemble spread may be smaller than desired, so a

postprocessing step is applied to the analysis ensemble

according to

xak 5 xac 1 g(xak 2 xa)1 (12 g)(xbk 2 xa) , (6)

where the first term denotes the analysis for the control

member, the second term denotes a perturbation from

the analysis ensemble mean, and the third term rep-

resents a perturbation from background ensemble

mean. Thus, the ensemble is recentered around the

control member, but the analysis perturbations are

mixed with the forecast perturbations. We choose

g 5 0.5, which is similar to the relaxation-to-prior

method proposed by Zhang et al. (2004), in which

covariance inflation is achieved by mixing forecast

and analysis perturbations.

In the application of this En3DA scheme, both radar

reflectivity and radial velocity data are assimilated

similar to Gao et al. (2013b) and Gao and Stensrud

(2014). The reflectivity forward operator is adopted

fromGao and Stensrud (2012), which is briefly discussed

in next section. The analysis variables x contain the three

wind components u, y, and w; potential temperature

u; pressure p; water vapor mixing ratio qy; and the

hydrometeor-related model variables, including the

mixing ratios for cloud water qc, cloud ice qi, rain-

water qr, snow qs, and hail qh, the latter three of which

are added to the analysis vector to assimilate re-

flectivity directly in a variational framework (Gao and

Stensrud 2012).

This En3DA scheme produces an analysis that is

similar to an EnKF scheme, as the En3DA scheme is

essentially a variational formulation with ensemble-

derived covariance. One advantage of this method

over the EnKF method is that weak constraints such as

the mass continuity equation can be incorporated in the

cost function so that a balanced analysis among different

model variables may be achieved. The En3DA method

also is computationally more efficient than the EnKF

method. Although the control variables are defined

differently from the analysis variables, the form of the

cost function has not changed much from that found in

a standard 3DVAR so that codes from an existing

3DVAR system can readily be utilized.

3. Model and experimental design

a. Prediction model and truth simulation for OSSEs

The En3DA algorithm described above is tested with

simulated data from a classic supercell storm event from

20May 1977 near Del City, Oklahoma (Ray et al. 1981).

TheARPSmodel is used in a 3D cloudmodel mode, and

the prognostic variables are the same as the analysis

variables described above. The single-moment, three-

category ice scheme of Lin et al. (1983) is used to de-

scribe the microphysical processes. More details on

ARPS can be found in Xue et al. (2000, 2001, 2003).

The model domain is chosen as 573 573 16km3. The

horizontal grid spacing is 1 km, and the mean vertical

grid spacing is 500m without stretching. The truth sim-

ulation run is initialized from a horizontally homoge-

neous background environment defined by a modified

real sounding taken at Norman, Oklahoma, plus an el-

lipsoidal thermal bubble with potential temperature

perturbation of 4K located at x5 48km, y5 16km, and

z 5 1.5 km, with radii of 10 km in x and y and 1.5 km in

the z direction. Open lateral boundary conditions are

used. The length of the truth simulation is 90min, and

this is long enough to cover the DA period. To keep the

primary storm cell near the center of model domain, a

constant wind with u 5 3ms21 and y 514ms21 is sub-

tracted from the observed sounding. Similar to Xue et al.

(2001), the initial convective cell develops over the first

30min, with cloud starting to form at about 10min and

rainwater appearing at about 15min. Ice-phase fields

appear at about 20min into the run. The strength of the

cell reaches peak intensity near 30min and then de-

creases between 30 and 60min. The cell splits at around

55min, a behavior indicative of a classic supercell

thunderstorm. The right-moving cell (relative to the

storm motion vector, which is toward north-northeast)

becomes stronger after this point, with its tilted re-

flectivity core and warm center collocated with a strong

mesocyclone in the middle levels (from 5 to 8 km above

the ground) and a strong cold pool near the surface at
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90min (Fig. 2). A similar truth simulation was also used

in Gao et al. (1999, 2004, 2013b), Tong and Xue (2005),

and Gao and Stensrud (2012).

b. Simulation of radar observations

The simulated radial velocity observations are derived

from the truth simulation wind field defined on the

model grids, as if one radar was positioned in the

southwest corner of the domain and another located in

the northeast corner. This radar network design leads to

some poor cross-beam angles near the ground as the

storm is maintained near the domain center. However,

there is very strong vertical shear in terms of both di-

rection and amplitude in the storm environment. Con-

sequently, the radar–storm geometry in middle and

upper levels is more favorable (good cross-beam an-

gles). This could cast an overly positive light on expected

analysis improvements. However, it is not uncommon

for storms to occur in locations with poor cross-beam

angles within the current operational WSR-88D net-

work. Thus, we believe that the radar–storm geometry

used in the experiments is reasonable for these early

evaluations of the method.

The three wind components u, y, and w are projected

to the radial directions to obtain the simulated Dopp-

ler radar radial velocity data using the azimuth of the

radial direction and the local slope of the radar beam

following a curving ray path:

y
r
5
dh

dr
w1

ds

dr
(u sinØ1 y cosØ), (7)

where yr is the projected radial velocity, r is the slant

range (ray path distance), h is the height above the

curving surface of Earth, s is the distance along Earth’s

surface, and Ø is the radar azimuth angle. To model

WSR-88Ds in precipitation mode, 14 different eleva-

tions angles are used that reproduce the operational

WSR -88D scanning strategy (Maddox et al. 2002).

Differentiating the equation for the height of the ra-

dar beam from the four-thirds-Earth ray-path equations

(from, e.g., Doviak and Zrnić 1993), one can derive the

local slope of the ray path:

dh

dr
5

�
r1

4

3
a sinu

e

�"
r2 1

�
4

3
a

�2

1
8

3
ar sinu

e

#21/2

, (8)

where a is Earth’s radius, and ue is the radar elevation

angle. From the grid point’s location with respect to the

radar and the four-thirds-Earth model for the ray path,

one can obtain the needed elevation angle and slant

range:

u
e
5 tan21

�
H cosS2 k

e
a

H sinS

�
and (9)

r5
H sinS

cosu
e

, (10)

FIG. 2. ARPS model–simulated wind vectors, vertical vorticity z (black contours), and perturbation potential temperature u (shaded)

fields of the 20 May 1977 supercell storm at 90min as reference truth. (a) Horizontal cross section at first level above ground; (b) vertical

cross section at y5 18.5 km in (a). Red solid lines are for reflectivity fields at 40 dBZ. The two radar locations are indicated at the bottom-

left and top-right corners.
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where H5 (4/3)a1 (z2 zradar), s5 3s/4a, and zradar is

the height of the radar. Ge et al. (2010) tested the

effects of beam broadening and Earth curvature in

the radar radial velocity forward operator within ra-

dar DA and found that the former effect can be gen-

erally overlooked while the latter should be considered.

Thus, in this study the effect of beam broadening

is neglected, but the effect of Earth curvature is

included.

The simulated reflectivity observations are calculated

based on Smith et al. (1975) and Ferrier (1994) for the

Lin et al. (1983) microphysics scheme. The forward

model for equivalent radar reflectivity factor is obtained

by collecting the contributions from the three pre-

cipitating hydrometeor mixing ratios—rain, snow, and

hail—using the following formulation:

Z
e
5Z(q

r
)1Z(q

s
)1Z(q

h
) and (11)

Z
dB

5 10 log
10
Z

e
. (12)

The assimilation of reflectivity observations is com-

plicated because the reflectivity factor is a nonlinear

function of all three hydrometeor variables (rainwater,

snow, and hail). This leads to the DA solution being

underdetermined. Thus, it is possible to obtain a non-

zero snow mixing ratio in the low levels of the model

where only rainwater is expected because of the very

warm temperatures at these levels. To prevent this, the

forward reflectivity operator from Gao and Stensrud

(2012), which uses the background temperature from an

NWP model for hydrometer classification, is used in

this study.

Random errors are added to the simulated observa-

tions at each observation location. For reflectivity,

random errors are drawn from a normal distribution

with a mean of 0 dBZ and a standard deviation of

4 dBZ. For radial velocity yr, random errors are drawn

from a normal distribution with a mean of 0m s21 and a

standard deviation of 1m s21 (or 5m s21 in some sen-

sitivity experiments). For most experiments, this same

group of perturbed reflectivity and radial velocity ob-

servations are used for every ensemble member of

3DEnVAR analysis. Since yr is sampled directly from

the simulated model velocity fields, hydrometeor sed-

imentation is not involved. In all of the experiments,

radial velocities are assimilated where reflectivities are

greater than 15 dBZ and model height levels are

greater than 1.5 km, or where reflectivities are greater

than 25 dBZ and model height levels are less than

1.5 km. These criteria were set to reduce the impact of

ground clutter and other nonweather echoes in the old

3DVAR program (Gao et al. 2004) for real-time ap-

plications and also are adopted here.

c. Design of assimilation experiments

Similar to Gao and Stensrud (2014), we start the

En3DA experiments at 30min of the model integration

time when the storm cell is becoming well developed.

Also based on the experiments performed in Gao and

Stensrud (2014), the ensemble size is set to 50 in this

study. To initialize the ensemble members, random

noise is added to the initially horizontally homogeneous

first guess throughout the model domain. The random

noise is sampled from Gaussian distributions with zero

mean and standard deviations of 5m s21 for u, y, and w

and 3K for potential temperature. A 2D five-point

smoother is applied to the resultant fields, similar to a

method used by Zupanski et al. (2006). The initial per-

turbation variances are somewhat larger than those used

in Tong and Xue (2005), but the standard deviation of

the final perturbations is not necessarily larger because

of the smoothing. Other model variables, including the

microphysical variables, are not perturbed at the initial

time. The radial velocity and reflectivity observations

are calculated and assimilated using a 5-min cycle in all

DA experiments with the first analysis performed at

30min. The localization scale for the recursive filter is

4 km horizontally and 1km vertically. One baseline ex-

periment and several sensitivity experiments are per-

formed in this study.

For the baseline analysis and forecast experiment, the

Lin microphysics scheme (Lin et al. 1983) is used in the

ensemble forecasts, and the mass continuity equation is

used as a weak constraint. Radial velocity and re-

flectivity are assimilated using a threshold reflectivity

value of 15 dBZ (other threshold values are chosen for

some sensitivity experiments). While the mass continu-

ity equation constraint is critical for analyzing vertical

velocities in 3DVAR schemes in earlier studies (Gao

et al. 1999, 2004; Hu et al. 2006), its impact for this

ensemble-related DA scheme is uncertain and thus is

studied here.

The first set of sensitivity experiments is performed to

test the usefulness of the mass continuity constraint by

not including it in the minimization of the cost function

and using random radial velocity observation error

amplitudes of both 1 and 5m s21. In reality, radial ve-

locity observations may contain large errors from other

sources, particularly because of bias errors related to

velocity aliasing, ground clutter, and anomalous propa-

gation (Doviak and Zrnić 1993). In real data simula-

tions, these problems often are addressed during the

radar quality-control step before the DA, although au-

tomatic outlier rejection and velocity dealiasing de-

veloped to operate during DA have proven to be simple

and effective for convective-scale radar DA for the
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NCAR WRF Model ensemble data assimilation system

(Yussouf et al. 2013). The possible impact of bad data

getting through quality control and contaminating the

analysis has not been thoroughly examined.

The second set of experiments is performed to test the

sensitivity of assimilating radar observations to changes

in microphysics schemes and their combinations used in

the ensemble analysis and forecasts. In the baseline ex-

periment, only the Lin microphysics scheme (Lin et al.

1993) is used. For the sensitivity experiments, three

additional experiments with different microphysics

schemes are performed.One of the experiments uses the

so-called three-class ice microphysics (3-ICE) scheme

(Gilmore et al. 2004), which is a single-moment scheme

similar to the Lin scheme. Another experiment uses the

two-moment version of the Milbrandt and Yau (2005)

microphysics scheme. In this scheme, both the mass

mixing ratios and their corresponding total number

concentrations are predicted variables, whichmakes this

scheme very different from the Lin and 3-ICE schemes.

In the final microphysics sensitivity experiment, we use a

mixture of these three microphysics schemes: that is,

among the 50 ensemble members, 16 use theMilbrandt–

Yau scheme, another 16 use the Lin scheme, and the

remaining members use the 3-ICE scheme. The analysis

and forecast cycle for the single control member uses the

Milbrandt–Yau scheme.

The third set of sensitivity experiments is performed

with different threshold values of reflectivity observa-

tions. As indicated in (11) and (12) [also in Gao and

Stensrud (2014)], the forward operator for reflectivity is

nonlinear, and it is difficult to assimilate highly non-

linear observations into anNWPmodel. Past experience

indicates that DA analysis results are sensitive to re-

flectivity observations with low values of reflectivity.

Particularly problematic is the fact that spurious storm

cells often develop when low values of reflectivity are

assimilated. Four more experiments are performed to

test the threshold reflectivity value, with three of them

assimilating reflectivity above the threshold values 5, 15,

and 35dBZ. For reflectivity below these threshold

values, they are treated as 0 dBZ and also assimilated to

suppress spurious convections.

The final sensitivity experiment tests the performance

of the En3DA when the radial velocity observations

are perturbed differently but with the same mean and

standard deviation for each ensemble member of the

3DEnVAR analysis. The purpose of this experiment

is to find out whether it is necessary to perturb the ob-

servations for each ensemble member to benefit the

En3DA method for convective-scale applications.

For comparison purposes, all DA experiments are

performed with 12 DA cycles, where each cycle has a

5-min analysis–prediction interval. The total assimila-

tion period is 60min, and the first analysis occurs at

30min.

4. Results

a. The baseline experiment

The baseline experiment serves as a benchmark for

all of the following sensitivity experiments. To exam-

ine the quality of the DA results more closely, we show

in Figs. 3a and 3b sample plots for the control member

analysis at the end of the DA cycle. Comparisons with

the true fields shown in Fig. 2 indicate that most storm

features, such as the low-level convergence zone,

strong tilted updraft core, midlevel mesocyclone, low-

level cold pool, and midlevel warm core, are well re-

covered. While the strength of the cold pool is a little

bit weak (the minimum perturbation potential tem-

perature is 26.9K compared with 28.4K in the truth

simulation), the thermodynamic structures at themiddle

and upper levels are well analyzed (Fig. 3b). The re-

flectivity field indicates that the general precipitation

patterns look very similar near the surface (Fig. 3a vs

Fig. 2a). The vertical extension of the reflectivity core

matches the truth simulation very well except for

some small bias near the 10-km level. The rms errors

of the u component of horizontal wind field, vertical

velocity w, perturbation pressure p, and water vapor

mixing ratio qy for the control experiment are shown

in red curves in Fig. 4. Generally the errors decrease

gradually, starting from the first analysis, and reduce

by 80% at the end of DA cycles for the majority of

the model variables. The important features of this

supercell storm are well analyzed in this control

experiment.

In the baseline experiment, an extra analysis and

forecast cycle member is used, and each ensemble

analysis is recentered on the control member analysis.

Actually, there is another option to recenter the

analysis with the ensemble mean of 3DEnVAR ana-

lyses. The evolution of rms errors with ensemble mean

versus the control member analysis in the baseline

experiment is shown in Fig. 5. The performances are

quite similar for most of the model variables during

the 1-h data assimilation period. Toward the end of

DA cycle, however, the baseline experiment in which

the ensemble is recentered on the control member

analysis gives slightly better results (Fig. 5). This re-

sult suggests the potential value of a dual-resolution

system in which a single very high-resolution con-

trol member and a relatively low-resolution ensem-

ble are performed simultaneously. Both ECMWF

and NCEP ensemble systems currently have this
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kind of dual-resolution structure (Du 2004; Bonavita

et al. 2012).

b. Sensitivity experiments with mass continuity
equation as a weak constraint

An earlier study by Gao et al. (1999) suggests that, to

obtain a reasonable three-dimensional wind field, the

mass continuity equation needs to be used as a weak

constraint instead of a strong constraint in 3DVAR.

Within this En3DAmethod, including a mass continuity

equation may benefit not only the wind field analysis but

also the analyses of the other model variables, such as

pressure and moisture variables, via the cross co-

variances in the error covariance matrix. Several sensi-

tivity experiments are performed in this section to

explore this question. Thus, the first sensitivity experi-

ment is exactly the same as the baseline, except that the

mass continuity constraint is neglected.

The analysis at the end of DA cycles without using

mass continuity constraint looks better than the baseline,

FIG. 3. As in Fig. 2, but for 3DEnVARanalysis with a radial velocity error of 1m s21. (a),(b) The baseline experiment withmass continuity

constraint; (c),(d) the experiment without mass continuity constraint. Red solid lines are for reflectivity fields at 40 dBZ.
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especially the representation of the cold pool, where the

minimum perturbation potential temperature is 28.27K

(Fig. 3c), closer to the reference true value, which

is 28.43K (Fig. 2a). The leading edge of the gust front

(indicated by a stripe of black vorticity contours) also is

sharper. By only viewing these quantities, it looks like the

analysis improves when no mass continuity equation is

used. But if we compare the reflectivity pattern (repre-

sented by the 40-dBZ contour line), the three precipi-

tation areas are combined into two areas. Comparing

Fig. 3d with Fig. 3b, we see that the analysis without the

mass continuity equation contains more small noise even

though the analysis generally looks better. Figure 4 shows

that the rms errors are larger when no mass continuity

constraint is used during the first two analysis cycles, es-

pecially for the u component of horizontal wind, vertical

velocity w, and water vapor mixing ratio qy. The final rms

errors after the 60-min assimilation period with (red

curves in Fig. 4) and without (green curves) the mass

continuity equation are quite similar, except for pressure p

(Fig. 4c), for which rms errors with the mass continuity

constraint are smaller. So a quick glance appears to in-

dicate that the role of mass continuity constraint has

mixed impact on the analysis results in this case.

A closer examination suggests that the analysis looks

more balanced when using the mass continuity con-

straint. For an example, Fig. 6 shows reflectivity, wind

vectors, and water vapor mixing ratios in a vertical cross

section at y5 18.5 km after two data assimilation cycles.

By comparing the analyses to the truth simulation, we

can see the changes produced by imposing the mass

continuity constraint. For reflectivity, the analysis with

mass continuity shows a precipitation pattern that is

smooth and has two descending zones of higher re-

flectivity starting from the anvil region, as also seen in

the truth simulation (Fig. 6a vs Fig. 6b). This feature

FIG. 4. The rms errors of the analysis and forecast for radial velocity observations contain errors of 1m s21. (a) Horizontal wind

component u (m s21); (b) vertical velocity w (m s21); (c) perturbation pressure p (hpa); and (d) water vapor mixing ratio qy (g kg
21). Red

and green correspond to the experiments with and without mass continuity constraint, respectively.
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does not appear in the analysis without mass continuity;

this analysis also shows more biased precipitation in the

low portion of the anvil area (Fig. 6a vs Fig. 6c). Though

it is hard to see from wind vectors (Figs. 6d,e,f), the rms

errors for winds indicate that the analysis with mass

continuity is slightly better. For water vapor mixing ra-

tio, the analysis with mass continuity constraint is clearly

much closer to the truth simulation (Figs. 6d,e,f). To

further demonstrate the benefit of the mass continuity

constraint, Fig. 7 shows the 1-h forecast initialized from

the ensemble mean generated with and without mass

continuity. In general, the forecast for nearly all model

variables is better for the experiment with mass conti-

nuity than without mass continuity, as indicated by

lower rms errors throughout most of the 1-h period.

In the above experiments, we have assumed that the

radial velocity observations have random errors with

a standard deviation of 1m s21. In real cases, these

errors can be larger. So in the following two sensitivity

experiments (one with mass continuity constraint and

the other without it), we assume that the radial velocity

observations have random errors with a standard de-

viation of 5m s21, so the amplitude of errors for radial

velocity are increased by a factor of 5. The resulting rms

errors for the experiment with the mass continuity

constraint do not increase very much (red curves in

Fig. 8 vs those in Fig. 4). In contrast, the rms errors for

the experiment without the mass continuity constraint

increase by a large margin (green curves in Fig. 8),

though these errors are still generally reduced with the

DA cycles moving forward. The rms errors for the ex-

periment without the constraint at the beginning of the

DA cycles are especially high for vertical velocity w and

water vapor mixing ratio qy. At the end of the DA pe-

riod, rms errors for all selected variables are larger for

the experiment without the mass continuity constraint.

FIG. 5. As in Fig. 4, but the red curve corresponds to the baseline experiment. The green curve corresponds to the experiment with

ensemble mean of 3DEnVAR analyses.
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FIG. 6. (a)–(c) Reflectivity and (d)–(f) wind vectors and water vapormixing ratio (contours) in a vertical cross section at

y 5 18.5 km after only two assimilation cycles for radial velocity observations containing errors of 1m s21 for (a),(d) the

reference truth; (b),(e) the experiment withmass continuity constraint; and (c),(f) the experiment withoutmass continuity

constraint.
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These two experiments suggest that, as the errors for the

radial velocity data are increased, the role of the mass

continuity constraint has a larger positive impact on the

resulting analysis. This conclusion is further supported

by examining the detailed structure of several selected

fields (Fig. 9), where the final analysis for the experiment

with the constraint is much better than that for the ex-

periment without it. In the experiment with the con-

straint, though the cold pool is slightly weaker than that

in the reference truth, the other features, such as con-

vergence and rotation of low-level winds (Fig. 9a) and

midlevel warm core (Fig. 9b), are all quite similar to the

truth simulation (Fig. 2). This is in contrast to the ex-

periment without the constraint, where the cold pool is a

little stronger (the minimum u is29.9K vs28.4K in the

reference truth), the outlines of reflectivity depart from

the truth simulation, the extension of the midlevel warm

core is shorter and contains some distortion, and the

maximum vertical velocity (242m s21) is much larger

than found in the truth simulation (228.1m s21; Fig. 9d

vs Figs. 9b and 2b).

c. Sensitivity experiments with several microphysics
schemes

In this section, we perform several experiments to

examine the sensitivity of the analysis to the micro-

physics scheme used in the assimilation. For convective-

scale DA, the double-moment microphysics schemes

have generally been found to perform better than single-

moment schemes for several real-data cases (e.g., Jung

et al. 2010; Mansell et al. 2010; Yussouf et al. 2013). For

the baseline experiment the single-moment Lin et al.

(1983) scheme is used. Here we perform three other

sensitivity experiments: one with the 3-ICE scheme

FIG. 7. The rms errors for 1-h forecast after data assimilation cycles with (a) horizontal wind component u (m s21); (b) vertical velocityw

(m s21); (c) perturbation pressure p (hpa); and (d) water vapormixing ratio qy (g kg
21). Red and green correspond to the experiments with

and without mass continuity constraint, respectively.
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(Gilmore et al. 2004), one with the double-moment

Milbrandt–Yau scheme, and one with a mixture of

all three multiple microphysics schemes, as discussed

above.

Figure 10 shows the variations of rms errors for rain-

water mixing ratio qr, vertical velocity w, perturbation

potential temperature u0, and water vapor mixing ratio

qy. It is not a surprise that the rms errors for the base-

line experiment with the Lin scheme are consistently

lowest among all variables because the nature run from

which radar observations are derived uses the same

Lin scheme. The second-lowest rms errors for the se-

lected variables are from the experiment with the 3-ICE

scheme. This is understandable since the 3-ICE scheme

is also a single-moment scheme and is quite similar to

the Lin scheme. The rms errors for the Milbrandt–Yau

scheme are the largest among the experiments, with the

errors for u0 gradually increasing with the DA cycles

going forward (Fig. 10c). Because the Milbrandt–Yau

scheme is very different from the Lin scheme with which

the nature run is produced, large model-related sys-

tematic errors apparently emerge when the DA cycles

are performed. One more experiment with a mixture of

the three microphysics schemes is performed to see if

these errors can be reduced. As expected, the rms errors

are generally larger than those for the two one-moment

schemes but smaller than when using just the double-

momentMilbrandt–Yau scheme. An examination of the

resulting storm structures shows that, in the experiment

with the 3-ICE scheme, the low-level cold pool and wind

convergence around the storm location is reasonably

analyzed (Figs. 11a, 2a), and the midlevel mesocyclone

and updraft core look quite similar to those in the nature

run (Fig. 11b vs Fig. 2b). The outlines for reflectivity also

match the true storm core well. For the experiment with

the Milbrandt–Yau scheme, the cold pool is very weak

(the minimum perturbation potential temperature is

only 21.3K). There is no curvature and convergence at

FIG. 8. As in Fig. 4, but for radial velocity observations containing errors of 5m s21.
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low levels around the storm near the center of the do-

main. The area of the midlevel warm core is smaller than

in the nature run, although the maximum value for tem-

perature is larger (15.78 vs 12.98). There are nearly par-

allel stripes of cold and warm anomalies, which contain

large bias errors in the upper levels, and a weak spurious

center of circulation at the lower-left corner (Fig. 11d)

compared to the nature run (Fig. 2b) and other experi-

ments. For the experiment with mixed microphysics

schemes, the strength of the cold pool is closer to the

nature run but still relatively weak, and its area is too

small (Fig. 11e), but the midlevel mesocyclone and

reflectivity structures are well analyzed (Fig. 11f).

There are many different microphysics schemes to

choose from, and it is not clear a priori which one will

perform best for a given event. Single-moment schemes

usually can adequately representmicrophysical processes

in convective-scale models or CAMs and also have the

advantage of being computationally efficient (e.g., Kain

et al. 2010). But as the resolution of NWP models in-

creases, the assumptions used in single-moment schemes,

especially the particle size distribution, become less valid.

FIG. 9. As in Fig. 3, but for 3DEnVAR analysis with radial velocity errors of 5m s21 for the experiments (a),(b) with and (c),(d) without

mass continuity constraint. Red solid lines are for reflectivity fields at 40 dBZ.
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Recent results from radar DA cases suggest that double-

moment schemes are likely to produce a more realistic

reflectivity structure and cold pool strength in a thun-

derstorm simulation than single-moment schemes (Dawson

et al. 2010; Jung et al. 2010). However, a recent study

assimilating satellite-retrieved cloud water path showed

that the simpler single-moment microphysics schemes can

outperform the more complex double-moment schemes

(Jones and Stensrud 2015). These contrasting results sug-

gest that there is no consensus regarding which micro-

physics scheme types are needed for convective-scale

NWP. For this reason, ensemble DA and forecasts using

multiple microphysics schemes may be a good choice, as

model errors related to different microphysics schemes

could be reduced.

d. Impact of assimilating reflectivity observations

Many previous studies have revealed that the creation

of realistic storm precipitation structures early in the

assimilation period results in reducedmodel spinup time

and can be accomplished by assimilating reflectivity

observations (Hu et al. 2006; Dowell et al. 2011; Gao and

Stensrud 2012). However, as discussed previously, when

low values of reflectivity are assimilated, spurious storm

cells may appear. Four sensitivity experiments are per-

formed, with three of them assimilating reflectivity

values above the thresholds of 5, 15, and 35dBZ and one

assimilating only radial velocity (used for reflectivity

values greater than 0dBZ). It is clearly shown in Fig. 12a

that assimilating reflectivity can reduce spinup time, as it

decreases rms errors for reflectivity in the first five to six

assimilation cycles (first 30min of assimilation). The rms

errors for perturbation pressure p (Fig. 12c) are also

obviously reduced duringmost of the assimilation period

(Fig. 12c). Assimilating reflectivity in general also has a

small positive impact on the quality of wind field (e.g.,

vertical velocity w in Fig. 12b) and water vapor mixing

ratio qy. The low threshold reflectivity value of 5dBZ

FIG. 10. The rms errors of the analysis and forecast cycles for (a) rainwater mixing ratio qr (g kg
21); (b) vertical velocity w (m s21);

(c) perturbation pressure p (hPa); and (d) water vapor mixing ratio qy (g kg
21). Red, green, blue, and purple lines correspond to the

experiments with Lin, Straka 3-ICE, Milbrandt–Yau, and hybrid microphysics schemes, respectively.
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FIG. 11. As in Fig. 3, but for 3DEnVAR analysis with several different microphysics schemes. (a),(b) The ex-

periment with the Straka 3-ICE scheme; (c),(d) the experiment with the two-moment Milbrandt–Yau scheme; and

(e),(f) the hybrid microphysics schemes. Red solid lines are for reflectivity fields at 40 dBZ.
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yields the largest rms errors for all selected model vari-

ables, especially forw.A comparison of all the sensitivity

experiments suggests that the experiment with threshold

reflectivity value of 15dBZ provides the lowest rms errors

for the selected model variables and is chosen for the

En3DA scheme. This result agrees with other research

for reflectivity data assimilation (Kong et al. 2011; Gao

et al. 2013a).

e. Experiment with and without observation
perturbations

The final set of experiments tests the sensitivity of the

En3DA to randomly perturbing the observations for

each ensemble member. Houtekamer and Mitchell

(1998) proposed to randomly perturb observations in

order tomaintain ensemble spread and improve analysis

quality. The perturbed observations were produced by

adding random noise to the actual observations used in

the DA. Different sets of perturbed observations were

used in different ensemble members. Whitaker and

Hamill (2002) proposed another ensemble Kalman filter

DA called the EnSRF, which does not require the ob-

servations to be perturbed for every ensemble member.

They demonstrated that the elimination of the sampling

error associated with the perturbed observations makes

their EnSRF algorithm more accurate than the original

type of EnKF methods proposed by Evensen (1994) for

the same ensemble size. Bowler et al. (2013) proposed

an ‘‘ensembles of Vars’’ type of method, which does not

need observation perturbations, based on the deter-

ministic EnSRF introduced by Sakov and Oke (2008).

Here we perform three additional experiments with the

En3DA method to determine if using perturbed obser-

vations for each ensemble member is necessary. As

in Houtekamer and Mitchell (1998), the perturbed ob-

servations for each 3DEnVAR member analysis are

FIG. 12. The rms errors of the analysis and forecast cycles for (a) reflectivity Z (dBZ), (b) vertical velocity w (m s21), (c) perturbation

pressure p (hPa), and (d) water vapor mixing ratio qy (g kg
21). Red, green, blue, and purple lines correspond to the experiments with

reflectivity thresholds 5, 15, and 35 dBZ and without assimilating reflectivity, respectively.
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produced by adding random noise to the radial velocity

observations with standard deviations of 1, 2, and

5ms21, respectively. The results of the three new ex-

periments are compared with the results with the base-

line experiment, which has a similar setup, but the same

reflectivity and radial velocity observations are used for

all ensemble members.

Figure 13 shows that the rms errors for the u andwwind

components, pressure perturbation p, and water vapor

mixing ratio qy are, on average, at similar levels for ex-

periments with noise amplitudes for radial velocity set to

1 and 2ms21 and the baseline experiment without differ-

ent observation perturbations for each ensemble member.

However, in the experiment with random noise ampli-

tudes of 5ms21, the errors for selected variables u, p, and

qy are all generally larger than in the other experiments,

especially for cycles of DA after 50min, although the er-

rors for w are close to those of the other experiments.

Introducing additional perturbations of the radial velocity

observations for each ensemble member generally does

not help to improve the quality of the DA results and,

when the amplitude of perturbation is large enough (with

5ms21 in the radial velocity data), these perturbations

actually hurt the quality of the analysis and lead to larger

analysis errors. Actually, Fig. 14 shows that the averaged

ensemble spreads for several selected variables in all ex-

periments stay quite close to each other during the DA

cycles. This indicates that adding random noise to the

observations used in the DA for each ensemble member

does not improve the accuracy of the analysis for assimi-

lating radar data of this idealized supercell storm.

5. Summary and conclusions

In this study, an ensemble of the 3DEnVAR system

named En3DA has been developed based on the

FIG. 13. The rms errors of the analysis and forecast cycles for (a) u component of wind field (m s21), (b) vertical velocity w (m s21),

(c) perturbation pressure p (hPa), and (d) water vapor mixing ratio qy (g kg
21). Red, green, blue, and purple lines correspond to the

experiments without observation perturbations and with observation perturbation values of 1, 2, and 5m s21, respectively.
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existing 3DVAR program within the ARPS model.

The flow-dependent covariances derived from an en-

semble of model forecasts are used in the ensemble of

3DEnVAR analyses. In addition, extra analysis and

forecast cycles are performed for a control member,

where the initial condition for the control member is not

perturbed at the beginning of the DA cycle. This ap-

proach is quite similar to classic ensemble forecasts

with a control member and perturbed ensemble mem-

bers. The method is applied to the assimilation of both

radar radial velocity and reflectivity data sampled from a

simulated supercell storm.

It is shown in the baseline experiment that the flow-

dependent ensemble covariances derived from En3DA

and the forecast system lead to the production of quality

analyses. Several key features of the simulated storm, in-

cluding the low-level cold pool, the low-level convergence

zone, and the midlevel mesocyclone, are well analyzed.

Several groups of sensitivity experiments are conducted

to test the robustness of the method.

Results from the first group of sensitivity experiments

demonstrate the benefit of incorporating the mass con-

tinuity equation as a weak constraint into the En3DA

algorithm. When radial velocity observations contain

small errors with amplitudes of 1m s21, the impact of the

mass continuity equation on the analysis is very limited.

However, when radial velocity observations contain

larger errors with amplitudes of 5m s21, the quality of

the analysis is greatly improved when using the mass

continuity constraint, and the general storm features

better match the truth simulation.

In the second group of experiments, we examine the

sensitivity of the analysis to the microphysics scheme. It

is found that DA results are quite sensitive to the mi-

crophysics scheme used. Because the truth simulation

is created using a single-moment Lin microphysics

FIG. 14. The evolution of ensemble spread for model variables (a) u component of wind field (m s21); (b) vertical velocity w (m s21);

(c) perturbation pressure p (hPa); and (d) water vapor mixing ratio qy (g kg
21). Red, green, blue, and purple lines correspond to the

experiments without observation perturbations and with observation perturbation values of 1, 2, and 5m s21, respectively.
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scheme, it is no surprise to see that the experiment with

the single-moment 3-ICE scheme outperforms the ex-

periment with the double-moment Milbrandt–Yau

scheme. In real data cases, it is very hard to know a priori

which microphysics scheme will outperform the others,

although theoretically double-moment schemes should

perform better than single-moment schemes. For this

reason, ensemble forecasts with multiple microphysics

schemes may be a reasonable choice going forward, as

model errors related to the microphysics schemes could

be reduced, as also suggested by Yussouf and Stensrud

(2010) and Yussouf et al. (2013).

The assimilation of reflectivity observations remains a

challenging problem in convective-scale DA. Including

reflectivity observations in the assimilation process

leads to faster model spinup, although when low values

of reflectivity are assimilated, spurious storm cells may

be created. Four sensitivity experiments show that as-

similating reflectivity can reduce spinup time, as seen

by large decreases in rms errors for reflectivity during

the first five to six assimilation cycles. Reflectivity as-

similation in general also has a small positive impact on

the quality of the wind field and water vapor mixing

ratio. Among the sensitivity experiments, the experi-

ment with threshold value of 15 dBZ provides the

best qualitative analysis and the lowest rms errors. The

final group of experiments shows that it is not necessary

to perturb radial velocity observations for every en-

semble number in order to improve the quality of the

analysis.

These results suggest that the incorporation of ensemble-

estimated covariance from an ensemble of 3DEnVAR

DA schemes can help yield a high-quality analysis. The

performance is quite similar to the hybrid EnKF and

3DVAR reported inGao and Stensrud (2014) but ismore

efficient. This research could have immediate implica-

tions for the Warn-on-Forecast (WoF) concept proposed

by Stensrud et al. (2009), which envisions a frequently

updated numerical model–based probabilistic convective-

scale analysis and forecast system to support warning

operations within NOAA. Because of the uncertainty

related to convective-scale NWP models and the highly

chaotic nature of convective weather events, it is essential

that ensemble forecasts are utilized in the WoF im-

plementation. However, because of the computational

intensity of high-resolution ensemble DA and the re-

sulting forecasts, there are computational challenges to

the operational implementation of ensemble Kalman

filter and 4DVAR-related algorithms for real-time op-

erations. Results from the current study suggest that the

En3DA method is a viable candidate for a WoF system

because the background error covariance can be con-

structed within the method, while the method itself can

be easily implemented with message passing interface

and can be very efficient computationally if properly

designed. Although the En3DA method has only been

tested with OSSEs thus far, future work will focus on real

data studies where phase errors will likely appear. In this

case, newer verification methods may need to be used. A

new interface that links the En3DA method with the

more commonly used WRF Model has been developed

recently, and we are testing this method in the WRF

Model for several real data cases.
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